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Highlights

ImageDDI: Image-enhanced Molecular Motif Sequence Represen-

tation for Drug-Drug Interaction Prediction

Yuqin He, Tengfei Ma, Chaoyi Li, Pengsen Ma, Hongxin Xiang, Jianmin
Wang, Yiping Liu, Bosheng Song⇤, Xiangxiang Zeng

• We innovatively proposed a motif-based retrieval method, which con-
structed a motif vocabulary and characterized the complex relation-
ships between local structures of input drugs.

• We propose an image-enhanced motif sequence framework that lever-
ages Adaptive Feature Fusion to incorporate global molecular image
information, improving motif-based sequence representation. The the-
oretical effectiveness of the framework is also validated.

• Extensive experiments on benchmarks demonstrate that ImageDDI
outperforms state-of-the-art baseline models. Additionally, it also achieves
superior results in inductive scenarios.
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Abstract

To mitigate the potential adverse health effects of simultaneous multi-drug
use, including unexpected side effects and interactions, accurately identi-
fying and predicting drug-drug interactions (DDIs) is considered a crucial
task in the field of deep learning. Although existing methods have demon-
strated promising performance, they suffer from the bottleneck of limited
functional motif-based representation learning, as DDIs are fundamentally
caused by motif interactions rather than the overall drug structures. In this
paper, we propose an Image-enhanced molecular motif sequence represen-
tation framework for DDI prediction, called ImageDDI, which represents a
pair of drugs from both global and local structures. Specifically, ImageDDI
tokenizes molecules into functional motifs. To effectively represent a drug
pair, their motifs are combined into a single sequence and embedded using a
transformer-based encoder, starting from the local structure representation.
By leveraging the associations between drug pairs, ImageDDI further en-
hances the spatial representation of molecules using global molecular image
information (e.g. texture, shadow, color, and planar spatial relationships).
To integrate molecular visual information into functional motif sequence,
ImageDDI employs Adaptive Feature Fusion, enhancing the generalization
of ImageDDI by dynamically adapting the fusion process of feature repre-
sentations. Experimental results on widely used datasets demonstrate that
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ImageDDI outperforms state-of-the-art methods. Moreover, extensive exper-
iments show that ImageDDI achieved competitive performance in both 2D
and 3D image-enhanced scenarios compared to other models.

Keywords: Drug–drug interaction, Motif sequence, Image-enhanced
representation, Deep learning, Multimodal fusion

1. Introduction

The concurrent use of multiple drugs can result in drug-drug interactions
(DDIs), which may reduce medication effectiveness and cause severe adverse
reactions, endangering patient health [1, 2]. Consequently, early identifica-
tion of these interactions is vital for ensuring patient safety and improving
therapeutic outcomes [3, 4]. Recently, many computational models have
been proposed to predict drug-drug interactions [5, 6]. Early methods usu-
ally adopt structural similarity profiles and structural information from drug
pairs based on deep neural networks (DNNs) to predict DDI types [7, 8].
However, these methods adopt DNNs to represent drugs, relying on expert
domain knowledge to design efficient features.

To address this, some advanced methods utilize graph neural networks
(GNNs) [9] to fully extract the structural features of molecules and pro-
mote the structural correlations between drugs [10, 11, 12]. Although these
methods have achieved promising performance, they focus primarily on the
structure of molecules, ignoring the associations between drugs and other
biomedical entities [13, 14]. Knowledge graphs and biomedical networks ef-
fectively integrate and represent multi-source heterogeneous data, providing
rich semantic information and clear relational representations [15, 16, 17]. To
further mine the semantic relations and domain knowledge between biomed-
ical entities, a line of work considers knowledge graphs and biomedical net-
works as the external information to enhance the structural representation
of drugs [18, 19, 20]. However, for the new drugs in the early stages, the
available information between biomedical entities is limited in these meth-
ods, which makes it difficult to establish connections with external knowl-
edge graphs and integrate them into interaction graphs. This hinders the
model’s generalization to new drugs under the inductive scenario. There-
fore, some approaches consider fully extracting the structural correlations
between molecules [21]. Motifs within molecules determine their pharma-
cokinetic (how the body processes them) and pharmacodynamic (how they
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affect the body) properties, ultimately determining all their interactions [10].

(a).Image-Enhanced Motif Sequence (b).Structure Similarity vs Image Similarity (c).ImageDDI compared to other baselines
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Figure 1: (a). ImageDDI representing visual information of molecules enhances the struc-
tural representation of drug pairs. (b). The similarity distribution of drug pairs learned
from ImageDDI is consistent with the distribution of their molecular structural similar-
ity (Mogan Fingerprint). (c). ImageDDI outperforms other solely graph- or image-based
methods.

Although existing approaches enable substructure-based molecular rep-
resentation learning, they struggle to effectively model motif interactions be-
tween drug pairs [12, 22]. To address this, we propose ImageDDI, an image-
enhanced molecular motif sequence representation framework for DDI pre-
diction (Figure 1a). Drug pair motifs are combined into a single sequence and
encoded using a Transformer-based encoder [23], starting with local struc-
tural representations. To improve motif representation and integrate global
molecular structures, we employ Adaptive Feature Fusion to model spa-
tial relationships within local motifs and enhance visual interactions between
drugs. As shown in Figure 1b, the high positive correlation between global
molecular images and local motif features (Morgan fingerprint [24]) demon-
strates that ImageDDI effectively captures motif relationships within drug
pairs. Figure 1c further shows that ImageDDI, by incorporating visual infor-
mation, outperforms graph-based (e.g., MRCGNN) and image-based (e.g.,
ImageMol) methods in enhancing motif representations. The main contribu-
tions of this work are as follows:

• We innovatively proposed a motif-based retrieval method, which con-
structed a motif vocabulary and characterized the complex relation-
ships between local structures of input drugs.

• We propose an image-enhanced motif sequence framework that lever-
ages Adaptive Feature Fusion to incorporate global molecular image
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information, improving motif-based sequence representation. The the-
oretical effectiveness of the framework is also validated.

• Extensive experiments on benchmarks demonstrate that ImageDDI
outperforms state-of-the-art baseline models. Additionally, it also achieves
superior results in inductive scenarios.

2. Related Work

2.1. Methods based on molecular representation
Early research often represented drugs as feature vectors, like the Deep-

DDI [7] model, which combined structural similarity profiles (SSP) with DNN
for DDI prediction. With the rise of GNNs, many studies used GNNs and
RDKit to convert SMILES sequences into molecular graphs for DDI predic-
tion. Since DDIs depend on both drug structures and biomedical entities
like targets, enzymes, and pathways, many GNN models have integrated
external information and used knowledge graphs. Knowledge graph-based
models like KGNN [17] and SumDDI [16] have proven effective but rely on
supervised data and struggle with new drugs. To improve DDI prediction
in inductive scenarios, we propose ImageDDI, which focuses on the intrinsic
chemical structure to enhance the generalizability of new drugs.

2.2. Methods based on molecular substuctures
Most studies on DDIs rely on partial and incomplete structural infor-

mation, which highlights the effectiveness of substructure-based approaches.
The early SSI-DDI model [10] employed co-attention with multiple GAT lay-
ers [25] to extract node features from diverse receptive fields. SA-DDI [12]
further improved this by assigning varying weights to local regions, thereby
enhancing the ability to capture substructures. However, these models pri-
marily focus on local substructures within a single molecular graph and fail
to treat them as independent entities, leading to a loss of spatial information.
The GMPNN model [11] addressed this limitation by treating substructures
as independent entities and incorporating a gated mechanism for interac-
tions. Similarly, the DSIL-DDI model [26] captured fine-grained interactions
but overlooked spatial relationships and the global structure of the substruc-
ture. Previous methods have generally neglected the structural relationships
between drug pairs. To overcome this limitation, we propose ImageDDI, a
model that unifies the substructures of drug pairs and incorporates visual-
spatial information derived from molecular images to enhance performance.
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3. Preliminary

3.1. Motif Sequence of a Pair of Drugs
The drug pair dx and dy are tokenized into Sdx and Sdy as the motif se-

quences of the drug pair. These sequences are merged using an � operation
to form a jointed motif sequence S(dx,dy) = Sdx � Sdy . This motif sequence
is then encoded by a Transformer-based model, which begins with local mo-
tifs and progressively captures deeper motif interactions, providing a more
accurate representation for DDI prediction.

3.2. Image-based Molecular Structure Representation
Recently, molecular imaging has gained attention, with studies using

molecular images to extract chemical structures and pixel-level visual data [27,
28, 29]. By adding convolutional and pooling layers, images can represent
both spatial structure and global visual information, which is crucial for un-
derstanding spatial interactions. Building on molecular dynamics, rotating
visual 3D molecular conformers provide an effective way to represent molec-
ular properties.

3.3. Problem Formulation
We define DDI prediction as a multi-class classification task to predict

interaction types. To achieve this, we propose an image-enhanced motif
sequence model that estimates interaction probabilities with visual guidance.
For details, the motif sequence of a drug pair dx and dy is denoted as S(dx, dy).
The model uses Adaptive Feature Fusion to integrate visual information
with substructure sequence data for efficient cross-modal representation. The
DDI event for each drug pair is predicted as:

ŷ(dx,dy) = F (Ix, Iy ⌦ S(dx, dy)) , (1)

where Ix and Iy are the visual representations of drugs dx and dyrespectively,
and the ’⌦’ denotes adaptively fuse the fetures.

4. Method

4.1. Overview of the Method
We propose an image-enhanced motif sequence framework that tokenizes

drugs into motifs and integrates global visual information. Specifically, Im-
ageDDI follows the three steps below: (1) Tokenizing drugs into motifs us-
ing BRICS and converting drugs into images with RDKit (Section 4.2); (2)
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Fusing visual and motif representations in a Transformer (Section 4.3); (3)
Extracting global visual features (Section 4.4); For a drug set D, each drug
dx 2 D is decomposed into motifs to build a motif vocabulary Vmotif. For each
pair of drugs (dx, dy), their motif sequences Sdx and Sdy are concatenated as
S(dx,dy) = Sdx � Sdy and processed by a Transformer. The visual features Ix
and Iy are fused to the Transformer through adaptive feature fusion. The
training algorithm is detailed in Appendix A.5.
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Figure 2: Overview of ImageDDI. (a) Motif Vocabulary Construction: Molecules are to-
kenized into motifs to build a motif vocabulary. (b) Image-Enhanced Motif Sequence:
A Transformer with adaptive feature fusion integrates image information into motif se-
quences. (c) Image Visual Information Extraction: Molecular images are rendered with
X-, Y-, and Z-axis rotations to extract visual features.
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4.2. SMILES to Graph motifs and Images
Motifs function as key local structural that govern molecular behavior in

DDIs by enabling specific binding and interaction mechanisms, thereby de-
termining the specificity, affinity, and overall prediction results of DDIs. The
ImageDDI framework is designed to align with this concept by split molecu-
lar structures to construct motif vocabulary, allows the model to effectively
capture the intricate interaction patterns, thereby enhancing the accuracy
and reliability of DDI predictions. Molecules are decomposed into functional
motifs, which are then used to build a motif vocabulary Vmotif. This method
captures essential motif information, providing a strong foundation for down-
stream tasks and enabling more accurate molecular representations. For the
drug set D, each drug di 2 D is processed with BRICS (for more details
in Appendix A.7) to extract its motif set Sdi . BRICS fragments molecules
by cleavable bond rules. New motifs mi 2 Sdi are assigned unique IDs and
added to Vmotif, ensuring complete coverage and uniqueness for downstream
analysis.

For 2D images, we convert SMILES representations into standardized 2D
topological molecular images using RDKit’s Chem.Draw module, enforcing
consistent rendering parameters (atom/bond visualization schemes and im-
age dimensions) to ensure uniformity in structural feature extraction.

For 3D images, we generate molecular conformers by removing hydrogen
atoms and using MMFFOptimizeMolecule() in RDKit with MMFF94 and a
maximum of 5000 iterations to generate conformers in a pre-defined coordi-
nate system. If the conformer does not converge, we double the iterations
and repeat up to 10 times. If convergence fails after 10 attempts, we use the
2D conformation instead.

4.3. Image-enhanced Motif Sequence
For the input drug pair (dx, dy), the motif sequences Sdx and Sdy are first

extracted and then concatenated into a unified sequence S(dx,dy) = Sdx�Sdy .
This sequence integrates the local substructure features of both drugs, estab-
lishes their overall structural relationships, and provides richer and more re-
liable input data for downstream tasks. To effectively model motif sequences
and integrate visual information for enhanced knowledge sharing between
visual and substructure features, we adopt a Transformer architecture, with
the Adaptive Feature Fusion module implemented through learnable at-
tention biases. This approach efficiently integrates features from the motif
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sequence S(dx,dy) and visual information Ixy (see in Section 4.4). To inte-
grate visual modality information into the model through adaptive feature
fusion, we introduce bias terms based on visual data. The extended attention
formula is:

Attention(Q,K, V ) = softmax
✓
QKT

p
dk

+ �Ixy · Ixy
◆
V, (2)

where Q = XWQ (query), K = XWK (key), and V = XWV (value), with
WQ,WK ,WV 2 Rd⇥dk as learnable weight matrices, and dk is the scaling fac-
tor to mitigate gradient vanishing. �Ixy is a learnable bias based on the drug
pair’s visual features Ixy, used to adjust the impact of the visual modality in
the attention mechanism. It dynamically adjusts the contribution of visual
information in feature fusion by extracting features from the visual data, op-
timizing the interaction between visual and structural features. The output
of the multi-head attention is further processed by a Feed-Forward Network
(FFN), calculated as:

FFN(x) = max(0, xW1 + b1)W2 + b2, (3)
where W1,W2 2 Rd⇥d are learnable weight matrices, and b1, b2 2 Rd are
learnable biases. The complete computation for each layer is:

Z = LayerNorm(S(dx,dy) + Attention(Q,K, V )), (4)
Z 0 = LayerNorm(Z + FFN(Z)), (5)

where S(dx,dy) is the input motif sequence representation. This approach
extends the Transformer by introducing Adaptive Feature Fusion, enhancing
its ability to process both sequence and image data. By merging local motif
features with visual information, it accurately models molecular interactions,
improving DDI prediction.

4.4. Image Visual Information Extraction
While motifs effectively capture local structural information, they lack the

entire molecular interaction landscape. We employ image-based techniques
to learn global interaction patterns, complementing motif analysis for a more
comprehensive understanding of DDIs.
2D Image. Compared to regular images, molecular images are more sparse,
with over 90% of the area filled with zeros, resulting in "usable" data occu-
pying only a small fraction of the image. Given this limitation, our model
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does not use "random cropping." We generate molecular images using RD-
Kit, followed by preprocessing and augmentations: (1) center cropping to
a fixed size; (2) 50% horizontal flipping; (3) 20% grayscale conversion; (4)
random rotation (0-360°). These methods do not alter the original struc-
ture of the molecular images and allow the model to learn invariance to data
augmentation.
3D Image. We use RDKit to optimize molecular conformers, which are
rotated counterclockwise (along the x, y, and z axes) at ten angles, generating
10 frames in different orientations. These frames are rendered in stick-ball
mode with PyMOL (640⇥ 480 RGB images), expanded to 640⇥ 640, resized
to 224 ⇥ 224, and stitched into molecular videos V = {I1, I2, ..., I10} with
resolution R10⇥3⇥224⇥224.
Image Feature Extractor. We use ResNet18 [30] as our backbond to en-
code 2D and 3D images, The 2D encoder extracts from a single 2D molecular
image, while the 3D encoder uses view-based mean pooling on multi-view 3D
images to obtain features. the image encoder generates visual representations
Ix and Iy for dx and dy, respectively. These representations are concatenated
to form a combined visual representation:

Ixy = concat(Ix, Iy), (6)

This approach captures each molecule’s visual features and encodes interac-
tion information through the combined representation, serving as input for
DDI prediction.

4.5. Drug–drug Interaction Prediction
For each drug pair (dx, dy) and its interaction type r, we now obtain the

motif sequence representation Z 0, which integrates image features processed
through a Transformer. This representation is defined as:

h(dx, dy, r) = Z 0, (7)

this representation is processed through a residual layer and a multi-layer
perceptron (MLP), with the final prediction computed as:

ŷr(dx,dy) = �(�(⇢(h(dx, dy, r)))), (8)

where � denotes the softmax function, � represents MLP, and ⇢ stands for
the residual layer. the loss function is defined as:

`c = �
1

N

NX

i=1

|R|X

r=1

yr(dx,dy) log(ŷ
r
(dx,dy)), (9)
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where N is the number of samples, ŷr(dx,dy) is the predicted probability for
relation r and |R| denotes the number of the type of DDI.

4.6. Justification of ImageDDI Effectiveness
We use Adaptive Feature Fusion to integrate image information into

motif sequences and analyze the information gained from visual features. To
formalize the features, we let F IE

(dx,dy)
and FM

(dx,dy)
denote features from image-

enhanced and motif-only sequences. We defined the information gained from
visual features as Igain = I(F IE

(dx,dy)
| S, r;Enc, �)-I(FM

(dx,dy)
| S, r;Enc),

where I(� | ⇤) denotes the amount of information produced by � under the
conditions of given * and I(F IE

(dx,dy)
| S, r;Enc, �) denotes the information

from visual features. We formulated the lower bound of Igain as ⌦, which
reflects the gap between visual and motif-sequence features, ⌦ = I(Ix,y |
I, r;EncImage)- I(FM

(dx,dy)
| S, r;Enc) This highlights the need for image en-

hanced motif sequences to better capture motif relationships. Leveraging
visual features, F IE

(dx,dy)
) integrates spatial and structural features, outper-

forming FM
(dx,dy)

. Please see Appendix F for more detailed proof. In the
following section, We validated image fusion effectiveness through ablation
and interpretability experiments.

5. Experiments

This section presents the experimental settings, model comparison with
baselines, performance on new drugs, hyperparameter sensitivity analysis,
and visual case analysis. More experimental details and results are provided
in the supplementary materials.

5.1. Experimental Settings
Datasets. We evaluated ImageDDI on three datasets for common and in-
ductive DDI prediction. In common scenarios, we used Deng’s dataset [31]
(37,159 DDIs, 567 drugs, 65 events) and Ryu’s dataset [7] (191,075 DDIs,
1,689 drugs, 86 events). For the inductive scenario, we tested on the Drug-
Bank dataset [32] (191,808 DDIs, 1,706 drugs, 86 categories).
Baselines. In common DDI prediction scenarios, we compare ImageDDI
with several representative DDI event prediction baselines, which can be
classified as follows:

• DeepDDI [7] utilizes structural similarity profiles and DNN to predict
DDI types using drug names and structural information.
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• SSI-DDI [10] utilizes a Graph Attention Network (GAT) on molecular
graphs, combining multi-layer GAT embeddings with a co-attention
mechanism to predict drug pair interactions.

• MUFFIN [15] is a multi-scale feature fusion model that integrates
drug structure, knowledge graphs, and biological information to predict
DDIs.

• GoGNN [33] uses GNNs on molecular and interaction graphs, lever-
aging self-attention and graph pooling to predict DDIs and CCIs.

• MRCGNN [19] is a leading DDI event prediction model that uses
drug molecular and DDI event graph features, refined by contrastive
learning.

• DSN-DDI [34] is a novel DDI prediction framework that uses dual-
view drug representation learning, alternating between local (single
drug) and global (drug pair) modules to effectively predict drug in-
teractions.

• ImageMol [27] is an unsupervised deep learning framework pretraining
on 10 million molecular images to extract chemical structures.

• CGIP [28] is a contrastive learning framework combining graph and
image to learn molecular representations from large-scale unlabeled
data.

In the inductive DDI prediction scenario, we included image-based models
(ImageMol, CGIP), DF-based models (CSMDDI), GF-based models (HIN-
DDI), and GNN-based models (KG-DDI, DeepLGF).

• CSMDDI [35] utilizes a RESCAL-based method to embed drugs and
DDIs, maps drug attributes to embeddings with partial least squares
regression, and employs a random forest classifier for DDI prediction.

• HIN-DDI [36] models drug-biomolecular relationships via a Heteroge-
neous Information Network and meta-path analysis for DDI prediction.

• KG-DDI [17] integrates diverse biomedical data via a Knowledge Graph
to model complex drug relationships for DDI prediction.
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• DeepLGF [37] encodes drug structures from SMILES and uses a Biomed-
ical Knowledge Graph to extract local-global information for DDI pre-
diction.

Implementation Details. For evaluation, we split each dataset into train-
ing, validation, and test sets (7:1:2 ratio), ensuring all interaction types are
represented. The task is multi-class classification, evaluated using Accuracy,
Macro-F1, Macro-Recall, and Macro-Precision. Hyperparameters: learning
rate = 1e-4, weight decay = 1e-6, sequence length = 16. The best model,
based on Macro-F1 from the validation set, was trained for up to 100 epochs
and tested. Each model ran five times with different splits, and average met-
rics were reported. More details are in Appendix A. Code is available at
https://github.com/1hyq/ImageDDI.

5.2. Comparison with Baselines
Table 1 shows the overall performance of ImageDDI. Data for DeepDDI,

SSI-DDI, MUFFIN, GoGNN, and MRCGNN are from MRCGNN [19], while
ImageMol and CGIP results are reproduced. In the common DDI prediction
scenario, we compare baseline models across two datasets. The key observa-
tions are as follows:

(1) ImageDDI (w/ 2D) improves accuracy by 16.78%, and ImageDDI (w/
3D) by 14.59% compared to SSI-DDI, demonstrating that visual molecular
representations enhance DDI prediction. (2) Our model outperforms the
MRCGNN model across all metrics, highlighting that image-enhanced motif
sequences better capture global and local molecular features. ImageDDI (w/
2D) outperforms ImageDDI (w/ 3D), likely due to the clearer representations
of 2D images compared to dynamic 3D structures. (3) While image-based
models perform well, they focus on single-molecule representations, limiting
their ability to capture complex drug interactions. Our model better captures
these relationships, improving Macro-F1 by 10.39% on the Deng’s dataset
and 6.82% on the Ryu’s dataset.

5.3. Inductive Setting
With the development of new drugs, especially for rare or severe diseases,

these drugs often contain new substances with unknown risks and haven’t
been extensively regulated. Identifying (DDIs) for these drugs is crucial. To
evaluate the model’s performance on unseen drugs (inductive), we partition
the dataset: dnew for new drugs, dold for seen drugs, with dnew [ dold = D
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Methods
S1 Partition S2 Partition

Macro-F1 Acc. Macro-F1 Acc.

CSMDDI 45.5 62.6 19.8 37.3
HIN-DDI 37.3 58.9 8.8 27.6
KG-DDI 26.1 46.7 1.1 32.2
DeepLGF 39.7 60.7 4.8 31.9
ImageMol 49.5 59.5 18.9 36.5

CGIP 48.9 58.5 23.6 40.8
ImageDDI(w/ 2D) 54.9 66.9 24.4 43.5

ImageDDI(w/ 3D) 53.7 67.3 24.6 42.9

Table 2: Performance evaluation of ImageDDI compared to other baselines in the inductive
setting on the DrugBank dataset. The bold denotes the best result and the underline
denotes the second-best result.

and dnew \ dold = ?. The dataset split consists of: S1 = {(dx, dy, r) | dx 2
dnew ^ dy 2 dnew}, which predicts the interaction type between emerging and
existing drugs; S2 = {(dx, dy, r) | dx 2 dnew ^ dy 2 dnew}, which predicts
the interaction type between two emerging drugs. Refer to Appendix B for
details. Table 2 compares the Macro-F1 scores and Accuracy of different
methods under S1 and S2 settings, highlighting the significant advantages of
ImageDDI(including both 2D and 3D images).

In the S1 setting, ImageDDI outperforms all models, with Macro-F1 and
Accuracy exceeding the best baselines (e.g., CSMDDI and ImageMol) by
9.4% and 7.4%, respectively. ImageDDI (w/ 3D) also performs well, showing
its ability to leverage both global visual and motif features for better DDI
prediction. In the S2 inductive setting, ImageDDI (w/ 2D) surpasses the
top baseline, CGIP, by 0.83% and 2.75% in Macro-F1 and accuracy. This
demonstrates ImageDDI’s adaptability and robustness in predicting unseen
drug interactions. Overall, ImageDDI consistently excels, proving the value
of incorporating image-enhanced motif sequence.

5.4. Ablation Study
To study the effectiveness of each component of the ImageDDI model, we

considered different variants:

• ImageDDI without images (w/o images): Models motif sequences with-
out visual information.
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• ImageDDI with graph positional info (w/ graph pos): Treats motifs as
nodes, connects drugs via common substructures, and uses a position
matrix for richer contextual representation.

• ImageDDI with 2D image (w/ 2D): Uses 2D images to capture overall
visual representation, enhancing sequence expressiveness.

• ImageDDI with 3D image (w/ 3D): Uses 3D images to capture overall
visual representation and dynamic changes, further enhancing sequence
expressiveness.

Macro-Rec. Macro-Pre. Acc.

weight decay weight decay weight decay

(a) (b) (c) 

Figure 3: Hyper-parameter sensitivity analysis

Experimental results (Table 1) show that incorporating image information
significantly improves performance. ImageDDI (w/o images) underper-
forms due to missing global visual information. ImageDDI (w/ graph

pos) improves context understanding but lacks visual detail. In contrast,
ImageDDI (w/ 2D) and ImageDDI (w/ 3D) capture both positions
and visual details, boosting DDI prediction. However, ImageDDI (w/ 2D)
outperforms ImageDDI (w/ 3D) as 2D images provide clearer visuals, while
dynamic 3D frames can obscure details. Thus, ImageDDI (w/ 2D) strikes a
better balance between clarity and representation.

5.5. Hyper-parameter Sensitivity Analysis
In this section, we conduct a hyper-parameter sensitivity analysis on Im-

ageDDI (w/ 2D) to examine the impact of the learning rate ( lr ), weight
decay, and drug motif sequence length (L) on model performance.
The Impact of The Combination of lr and weight decay. We experi-
mented with various combinations of lr {2.5e�4, 5e�4, 7.5e�4, 1e�3, 1.25e�3}
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Figure 4: Motif attention weight heatmap

and weight decay {1e�3, 1e�4, 1e�5, 1e�6}. Figure 3(a) shows the results
(detailed analysis in Appendix C). The best performance was achieved with
lr = 1e-3 and weight decay = 1e�6, showing the importance of balancing
lr and weight decay for optimization and regularization, leading to higher
accuracy. This analysis highlights optimal settings to prevent overfitting or
underfitting and improve performance.

5.6. Visual explanations for ImageDDI
Effect of Drug Motif Sequence Length L. We tested drug motif se-
quence lengths L of 8, 12, 16, 20, and 24. As shown in Figure 3 (b), perfor-
mance improves up to L =16, then declines. This suggests that an optimal
sequence length captures enough information, while longer sequences add
noise and shorter ones miss key details, both reducing performance.
2D Visual Explanations. To assess the model’s ability to identify key
motifs in DDIs, we used heatmaps to highlight motifs with higher attention
weights and compared them to existing literature. Figure 4 shows two DDI
cases. In Figure 4 (a), the DDI between Cisapride and Enzalutamide[38]
is shown. The heatmap highlights the amide group in Cisapride for 5-HT4
receptor binding, aiding GERD and gastroparesis treatment. The trifluo-
romethyl group in Enzalutamide boosts hydrophobicity, stability, and recep-
tor affinity, enhancing anticancer efficacy. Figure 4 (b) shows a cold-start DDI
case with Lansoprazole and Lapatinib. The heatmap highlights the thiazole
group in Lansoprazole, inhibiting H+/K+-ATPase to treat ulcers and GERD,
and the sulfonamide group in Lapatinib, improving EGFR and HER2 bind-
ing for better breast cancer treatment. These results show that ImageDDI
accurately identifies key motifs, even in cold-start cases, matching chemical
insights in DDIs. We also used t-SNE [39] to visualize drug pair representa-
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(a).The visualization of Drug Mexiletine 

(b).The visualization of Drug Selegiline 

Figure 5: Case study on visualizing local attention in video frames.

tions in ImageDDI (w/ 2d), as explained in Appendix D.
3D Visual Explanations. To validate the invariance of drug pairs across
different video frames, we employed Grad-CAM to visualize the attention
heatmaps. For the visualization process, we randomly selected four frames
from ten generated by PyMol, setting attention values below 0.5 to 0. As
shown in Figure A.6, we selected a drug pair and visualized it using the de-
scribed method. The results revealed that molecules across different frames
consistently focused on the same motif, demonstrating the stability and effec-
tive feature capture of our ImageDDI model (with 3D information). For the
pair of drugs, our model can focus on the distinct structural features of each
drug across frames, which are highlighted across all frames for each (such
as the functional group C-O-C and amine group). These findings illustrate
the model’s capability to identify critical functional motifs, demonstrating
strong spatial perception and robustness.
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6. Conclusion

This paper presents ImageDDI, a framework that enhances motif se-
quences with visual information to improve DDI prediction. By combin-
ing functional motifs with visual features from molecular images, ImageDDI
addresses the limitations of traditional methods that focus on isolated sub-
structure interactions. Experiments show that ImageDDI outperforms exist-
ing methods, particularly for novel drug interactions.

Future work will focus on improving generalization to unseen drugs, and
developing interpretable models.
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Appendix A. Appendix

Appendix A.1. Details about Experimental Setup
Our model is implemented with PyTorch 1.6.0 [40]. All code was devel-

oped on an Ubuntu server equipped with 1 GPU (NVIDIA GeForce 4090),
CUDA 12.2, and 12 vCPUs (Intel(R) Xeon(R) Platinum 8352V CPU @
2.10GHz). Table 1 demonstrates all the hyper-parameters of ImageDDI.

Appendix A.2. Details of the Inductive Setting
To evaluate our method’s performance on unseen new drugs (i.e., the

cold-start problem), we partitioned the dataset based on drugs rather than
drug-drug interactions (DDIs). Let Gnew represent the set of new drugs (i.e.,
drugs not seen during training), and Gold represent the seen drugs, such that
Gnew [ Gold = G and Gnew \ Gold = ;. Based on this, the new dataset split
consists of:
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Hyper-parameter Description Value

T the number of multi-head attention layers 6
K the number of heads of multi-head attention 8
node_hidden the node hidden size for the ImageDDI 512
D the number of DDI classification types 65/86
lr the number of learning rate 0.001
vcab_size the number of motif types 3951
L the length of drug substructure sequence 16
weight_decay weight decay for Adam optimizer 0.000001
epoch the number of training epochs 100
batch_size the input batch size 128

Table A.3: Hyper-parameters of ImageDDI

• Training Set Dtrain: Includes those drug pairs used for training (i.e.,
seen drugs), defined as:

Dtrain = {(Gx, Gy, r) 2 D | Gx 2 Gold ^Gy 2 Gold}

• Test Set DS1: Includes those pairs where at least one drug is new,
defined as:

DS1 = {(Gx, Gy, r) 2 D | (Gx 2 Gold ^Gy 2 Gnew)

• Test Set DS2: Includes all new drug pairs (i.e., drugs not seen during
training), defined as:

DS1 = {(Gx, Gy, r) 2 D | Gx 2 Gnew ^Gy 2 Gnew}

Specifically, Dtrain contains interactions between drugs that are all known
(i.e., seen during training). DS1 contains entirely new drug pairs, which
the model has never encountered during training. For DS2, it includes pairs
where some drugs are new, and some are old.

The model is first trained on Dtrain, then tested on both DS1 and DS2.
This setup allows us to evaluate the model’s ability to predict drug-drug
interactions involving unseen drugs, particularly in cold-start scenarios.The
inductive setting is evaluated on the DrugBank dataset, with the specific
dataset partitioning details shown in Table 2.
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Figure A.6: Results of Hyper-parameters

Appendix A.3. Detailed results of the Hyper-parameter experimental setup
During model training, learning rate (lr) and weight decay are critical

hyperparameters. The learning rate controls the step size for updating model
parameters, while weight decay acts as a regularization technique to prevent
overfitting. We evaluated the model using Accuracy, Macro-Recall, Macro-
precision, and Macro-F1; the final results for Macro-Recall, Macro-Precision,
and Accuracy are presented in Figure 1.

To identify the best combination of learning rate and weight decay, we
conducted extensive experiments. We tested various combinations of lr and
weight decay, using learning rates of {2.5e�4, 5e�4, 7.5e�4, 1e�3, 1.25e�3}
and weight decay values of {1e�3, 1e�4, 1e�5, 1e�6}. The results showed
that the model performed best with a learning rate of 1⇥10�3 and weight de-
cay of 1⇥10�6, indicating that this combination optimally balances learning
and regularization, leading to improved prediction accuracy.

The choice of these hyperparameters significantly impacts the model’s
convergence speed and generalization ability. A high learning rate may cause
instability, while a low rate can lead to slow convergence. Similarly, too much
weight decay can cause underfitting, while too little may not adequately
prevent overfitting.

Overall, our analysis highlights the importance of fine-tuning these hy-
perparameters to achieve optimal model performance.

Appendix A.4. Visualization of Deng’s dataset using the t-SNE
To evaluate the impact of 2D-visual location information, we used t-SNE

[39] to visualize the representations of drug pairs in ImageDDI (w/ 2D),
selecting 20 low-frequency and 5 high-frequency DDI events. Figure A.7
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Figure A.7: Visualization of Deng’s dataset using the t-SNE.

shows the clustering results, with high-frequency events in the top and low-
frequency events in the bottom. Drug pairs with visual information clus-
ter more tightly than those without one, indicating that ImageDDI(w/ 2D)
effectively integrates sequence and visual features for high-quality represen-
tations. Additionally, the more compact clustering in low-frequency events
suggests that ImageDDI(w/ 2D) is particularly effective at predicting rare
DDI events.

Appendix A.5. The overall process of ImageDDI
In order to clearly describe the proposed ImageDDI framework, we show

the overal process in Algorithm 1.
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Algorithm 1: Training Pipeline of ImageDDI
Input: Require: Training set Dtrain, validation set Dval, testing set

Dtest, motif extraction, image encoder EncI , Transformer
with adaptive feature fusion.

1 Construct the motif vocabulary Vmotif from the drug set D through
motif extraction.

2 repeat:
3 for (dx, dy, r) 2 Dtrain (in mini-batch) do:
4 Extract motif sequences S(dx,dy) ;
5 Extract image featuresI(x,y)  EncI(dx, dy) ;
6 Fuse S(dx,dy) and I(x,y) using Transformer:
7 Z 0  Transformer(S(dx,dy), I(x,y));
8 Predict r using MLP with Z 0 ;
9 Compute loss L ;

10 end for

11 Update EncI , Transformer;
12 until performance on Dval stabilizes;
13 Evaluate the model on Dtest;
14 return Trained ImageDDI model.

Appendix A.6. Proof about the lower bound of the information increment
Igain

We provide a detailed theoretical proof for the lower bound ⌦ of the infor-
mation increment Igain. The information increment is defined as the increase
in useful information of one feature compared to another. Let: Igain = IIE�
IM , which represents the knowledge gain after incorporating image guid-
ance. The image-enhanced feature F IE

(dx,dy) is related to the motif sequence
feature FM

(dx,dy). The information contained in F IE
(dx,dy) can be formulated as:

IIE = I(F IE
(dx,dy) | S, r;Enc, �), where S represents the motif sequence, and r

is the corresponding label. Similarly, the information contained solely in the
motif sequence can be expressed as: IM = I(FM

(dx,dy) | S, r;Enc). Assuming
the image feature F image and the motif feature FM

(dx,dy) are integrated us-
ing a transform [23] model, we have: F IE

(dx,dy) = Transform(F image, FM
(dx,dy)),

where Transform represents a mapping function that captures interactions
between image features and substructure features. Under this framework,
F IE
(dx,dy) combines contextual information from both image features and sub-

structure sequences. The information increment Igain can then be written
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as:
Idiff = I(F IE

(dx,dy) | S, r;Enc, �)� I(FM
(dx,dy) | S, r;Enc). (1)

Due to the integration of image features through the transform model,
F IE
(dx,dy) captures additional information that enhances the representation.

Therefore:

I(F IE
(dx,dy) | S, r;Enc, �) � I(FM

(dx,dy) | S, r;Enc), (A.1)

which implies Igain � 0. Furthermore, the lower bound of Igain can be
expressed as:

Igain � ⌦ = I(F image | S, r;Encimage)� I(FM
(dx,dy) | S, r;Enc). (2)

Here, I(F image | S, r;Encimage) represents the contextual information
derived directly from image features, and ⌦ reflects the knowledge increment
between image features and substructure sequence features.

This analysis demonstrates that integrating image features and substruc-
ture features through a transform model can significantly enhance the repre-
sentation of substructure sequences. Clearly, when the transform model ef-
fectively captures the associations between image and substructure features,
Igain � 0 holds true.

Appendix A.7. Details of the BRICS decomposition of molecular motifs
The drug set D contains multiple drug molecules, each of which is pro-

cessed by the brics.decomp() function to extract its corresponding motif
set Sdi . brics.decomp() is a key function in the BRICS method. It an-
alyzes the cleavable chemical bonds in the molecule and, following specific
chemical rules, breaks the drug molecule into smaller, functionally signifi-
cant fragments known as BRICS motifs. These motifs often play a crucial
role in the chemical activity or biological properties of the molecule, making
them highly valuable in drug design and optimization. Each motif mi is as-
signed a unique identifier and added to the motif vocabulary Vmotif, ensuring
the uniqueness and consistency of the data. This vocabulary records all the
motifs found in the drug molecules, providing a foundation for further drug
interaction studies and helping to better understand the relationship between
molecular structure and function.
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