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Abstract—Molecular interaction prediction is essential in various applications including drug discovery and material science.

The problem becomes quite challenging when the interaction is represented by unmapped relationships in molecular networks, namely
molecular interaction, because it easily suffers from (i) insufficient labeled data with many false-positive samples, and (i) ignoring a
large number of biological entities with rich information in the knowledge graph. Most of the existing methods cannot properly exploit
the information of knowledge graph and molecule graph simultaneously. In this paper, we propose a large-scale Knowledge Graph
enhanced Multi-Task Learning model, namely KG-MTL, which extracts the features from both knowledge graph and molecular graph
in a synergistic way. Moreover, we design an effective Shared Unit that helps the model to jointly preserve the semantic relations of
drug entity and the neighbor structures of the compound in both knowledge graph and molecular graph. Extensive experiments on four
real-world datasets demonstrate that our proposed KG-MTL outperforms the state-of-the-art methods on two representative

molecular interaction prediction tasks: drug-target interaction prediction and compound-protein interaction prediction. The source

code of KG-MTL is available at https://github.com/xzenglab/KG-MTL.

Index Terms—Machine learning, knowledge graph, multi-task learning, drug discovery

1 INTRODUCTION

OLECULAR interaction prediction between targets plays
Ma critical role in many applications, including pharma-
cology and clinical application [1]. Such a process is to pre-
dict the unmapped relationships between unknown targets,
namely molecular interaction prediction (MIP), and it is one
of the fundamental steps to explore the candidate drugs for
targets in drug discovery, which further speeds up the costly
and time-consuming process of experiment [2], [3]. A typical
MIP pipeline takes the features of drug and target (e.g., pro-
tein or gene) as the input and outputs the interaction proba-
bility of given drug-target pair. The predicted interactions
are beneficial to various subsequent tasks, including molecu-
lar property prediction [4], [5], [6], [7], drug reactions [1], [8],
drug effectiveness [9] and drug side effects prediction [10],
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[11]. However, accurately recognizing the molecular interac-
tion with computational methods remains challenging.

Previous approaches on molecular interaction have
exploited various types of molecular features, such as
chemical structures [12] and the similarities between
drug-target pairs [13]. However, these methods heavily
depend on the design of hand-crafted features and
domain knowledge from labeled data. Recently, various
deep neural networks and graph neural networks have
been developed and achieved excellent performance for
MIP. Most existing methods focus on modeling each
chemical molecule as the molecular graph to capture the
neighbor structure information [14], [15], [16], or integrat-
ing various networks as side information to boost the pre-
diction performance, including protein interactions [17],
drug-drug interactions [18], and drug-target interac-
tions [19], [20]. However, these works are using either
local features or a relatively small network that can not
comprehensively consider most biological entities with
comparison to large-scale knowledge graphs (e.g., DRKG
includes 97,238 entities and 5,874,261 triples). Further-
more, there are many false positives(i.e., samples origi-
nally regarded as positive are actually potential negative
ones) and limited labeled samples in the constructed net-
works, which will result in negative influence on model
performance [21], [22].

Recent studies adopted knowledge graph (KG) to enhance
the biological data reliability in downstream tasks, such
as drug-drug interaction (DDI) prediction [23], adverse
DDI [24], and unknown drug-target interaction (DTI) or com-
pound-protein interaction (CPI) prediction [25]. They apply
knowledge graph representation learning to integrate multi-
ple data sources. However, these works directly learn latent
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entity embedding without considering multiple relationships,
which are limited in mining semantic relations and topologi-
cal structures of each entity in KG. For example, KGNN [23]
merely focused on the DDI information while it ignored other
types of entities and relations in KG.

We observe that existing methods on molecular interac-
tion prediction do not make full use of knowledge graph
as well as molecular graph and only consider partial
information. These limitations and the success of multi-
task learning [26], [27], [28] motivate us to develop a new
method to fully exploit the information from both knowl-
edge graph and molecular graph to predict the molecular
interaction. In particular, we propose a novel large-scale
knowledge graph enhanced multi-task learning model,
named KG-MTL. The idea of KG-MTL is natural and intu-
itive, which combines the topological structure of the
molecular graph and the corresponding biological entities
of KG, by using multi-task learning strategies. In addition,
we adopted a comprehensive biological KG including
drugs, diseases, proteins, genes, pathways, and expres-
sion. Therefore, we can mine a large number of potential
drug-target interactions from the KG that can improve the
performance of other tasks by some query patterns (see
details in Section 3.7). In a nutshell, our framework con-
sists of three major modules. Specifically, (i) DTI module is
used to extract the features of drugs and related entities
from large-scale KG. (ii) CPI module is adopted to learn
two representations of the molecular graph and protein
sequences. (iii) Shared Unit is designed to share task-inde-
pendent drug features between the previous two mod-
ules, by combining the molecular representation of
compound and corresponding drug entity embedding
from KG. In summary, the contributions of this work are
as follows:

1)  To the best of our knowledge, this is the first work to
apply a large-scale knowledge graph on a multi-task
learning model, namely KG-MTL, to the problem of
molecular interaction prediction.

2) The proposed KG-MTL has two distinct technical
highlights. (i) KG-MTL jointly extracts the features
from both knowledge graph and molecule graph
synergistically; and (ii) the novel shared unit is
designed to capture the semantic relations of drug
entity in the knowledge graph while preserving the
topological structures of the compound within the
molecular graph.

3) Extensive experiments on four real-world datasets
illustrate that KG-MTL outperforms the state-of-
the-art molecular interaction prediction baselines in
two representative applications: drug-target inter-
action prediction and compound-protein interac-
tion prediction.

The rest of this paper is organized as follows. In Section 2,
graph-based and KG-based methods on the MIP prediction
tasks are introduced. The formulation and the details of
KG-MTL are presented in Section 3. Section 4 illustrates var-
ious experiments (e.g., Ablation Experiments) to validate
the effectiveness of KG-MTL. And in Section 5, we discuss
the future work and existing issues to improve the molecu-
lar interaction prediction.
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2 RELATED WORKS

Over the years, molecular interaction prediction (MIP) has
received great attention in drug discovery. Previous works
mainly focused on investigating various types of molecular
features to predict the molecular interaction. For example, a
bipartite local model was proposed to predict unknown tar-
gets by using chemical structures information [12]. And
Gaussian interaction profile kernels were designed to
describe the similarities among drug-target interaction pro-
files [13]. However, these methods heavily depend on fea-
ture engineering and domain knowledge.

2.1 Graph-Based Methods

More recently, various deep neural networks and graph
neural networks (GNNs) have achieved excellent perfor-
mance for molecular interaction prediction. In particular, an
end-to-end deep learning framework named GNN-CPI [15]
that applied GNN layer to extract the fingerprint features of
the compound represented by molecular graph. In the same
line of work, a novel heterogeneous network named Neo-
DTI [19] learned low dimensional vector representation of
drug by integrating multiple drug-related networks to pre-
dict the unknown target. Moreover, MONN was proposed
to jointly predict both non-covalent interactions and binding
affinities between compounds and proteins [29]. However,
these methods are either local features of the molecule or
relatively small to consider most biological entities. With
comparison to the graph-based (a.k.a network-based) meth-
ods, our proposed KG-MTL can automatically extract the
features of drug from molecular graph, and also obtain the
semantic relations information between drug and other
entities from the large-scale knowledge graph.

2.2 KG-Based Methods

Recent studies on molecular interaction prediction also
apply large-scale knowledge graph (KG) to extract various
biological entities. For example, a novel method named
GAMENet was constructed to integrate multiple datasets
with DDI information in KG to predict unknown adverse
DDI [24]. And TriModel adopted KG embedding to learn
the representations of drug and target for DTI predic-
tion [25]. These models usually extract drug features using
various embedding methods, and directly learn entity
embedding from KG, while they easily ignore the semantic
relations and topological features between drug and other
entities. Compared with this line of methods, our KG-MTL
differs from them in the following aspects: (i) our proposed
framework jointly considers multiple types of drug entity
and relations from knowledge graph and the neighbor
structures information from the molecular graph, to further
improve the performance between two tasks. and (ii) we
develop an effective shared unit module to train the two
tasks that works well under our framework by synergisti-
cally using multi-task learning strategies.

3 METHOD

In this section, we first formulate molecular interaction pre-
diction problem. Then we introduce the framework of the
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proposed KG-MTL. Finally, we discuss the model training
and learning strategy in detail.

3.1 Preliminaries

Problem Definition. For ease of understanding of our pro-
posed method, in this paper, we focus on two representative
applications of molecular interaction prediction: drug-target
interaction (DTI) prediction and compound-protein interac-
tion (CPI) prediction. In DTI task, we aim to estimate the
interaction probability pfi’ of a drug-target pair (d;,t;) in
knowledge graph G. As to CPI task, our goal is to evaluate the
occurrence probability score p(’” with a compound-protein
pair (gi,s;) in molecule graph. Therefore, we aim to learn a
prediction function (pffﬂpjf‘) = F((di,tj), (i, 5))0,G) ,
where O denotes the model parameters.

Knowledge Graph. We consider a KG as G that provides
base information for a drug-target pair (d;,t;) € Py; in DTI
task, where Py; is the set of DTI pairs. And we define e,
and e;; as the learned embeddings of corresponding drug
entity d; and target entity ¢; from G, respectively.

Molecule Graph. Given compound-protein pair (g;, s;) €
P,,i, where F,,; denotes the set of CPI pairs, the compound
g; is defined by a molecule graph transformed from SMILES
using RDKit [30]. And g; = (V, £) where V denotes the set of
atoms and £ is the set of edges between atoms. Then we
denote a global embedding of molecule graph g; as e,,.
Meanwhile, we define a protein s; in the format of amino
acid sequences. And we represent the protein sequence
embedding as e;; by using word embedding.

3.2 Framework of KG-MTL

The framework of KG-MTL is illustrated in Fig. 1, and it
consists of three modules. In DTI module, the relational
graph convolutional network (RGCN) is applied to learn
the semantic relations and topological structure information
of drug and target entities from the knowledge graph,
which helps to predict unknown drug-target interaction. In
CPI module, we adopt convolutional neural network (CNN)
and graph convolutional network (GCN) to extract more
chemical contexts and the molecular structures from protein
sequence and compound molecular graph respectively.
And more importantly, we design an effective Shared Unit
to fuse the molecular structure of compound with the
semantic relations of the corresponding drug entity from
the previous two modules, to further improve the model
performance.

3.2.1 DTI Module

In the DTI task , we learn latent representations of drug and
target entities from large-scale DRKG [31] which provides
much information shared for two tasks as shown in Fig. 1
(i.e., DTI Module). Specifically, we first generate a subgraph
from DRKG using neighbor sampling [32] to make the model
converge faster. Then we employ a 3-layer RGCN model [33]
to extract the semantic relations and topological structure of
entities from the previously generated subgraph. And mul-
tiple aggregation techniques are adopted in RGCN to con-
sider different types of relationships between entities, and
the specific operations are as follows:
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where e ) and &' y ) denote the embeddmg of i"* and ;" entity
in " RGCN layer (e.g., ed and et € R%™), and W, repre-
sents the weights of relation T, and N denotes the set of
neighbors of node entity ¢ under relatlon reR,and ¢, is a
normalization constant, where we set ¢;, = |N}|, o denotes
the activation function (i.e., ReLU). Subsequently, we com-
bine the embeddings of drug and target entities that learned
from the last RGCN layer and termed it as a concatenated
vector [egl >, e ] Finally, we input the concatenated vector
into a cla551f1er which consists of a multi-layer perception
(MLP) and a sigmoid layer to output the interaction probabil-

ity pf’ of given DTI pair.

3.2.2 CPI Module

As shown in Fig. 1 (i.e,, CPI Module), given a molecule
graph g; and a protein sequence s; in CPI pair (g;, s;), we
first use a GCN layer to continuously update the node
embedding v; in a molecular graph through message pass-
ing [34], where each atom node v; € V is the ith atom initial-
ized by a 78-dimensional feature vector v; [35]. Next we
input the hidden feature matrix M of the last GCN layer
into a MLP readout layer, to obtain the global representation
e(!) and we have:

14

& =2 Za(f vi)) @

3.2.3 Shared Unit

To effectively associate DTI and CPI modules and to
address the limitations in previous works, we design a
novel Shared Unit to mix the molecular structures of com-
pound with the semantic relations of the corresponding
drug entity in the knowledge graph. As shown in Fig. 1 (i.e.,
Shared Unit), given drug entity d; and the Correspondmg
compound g;, we first take the drug entity embedding e,(1> of
the [ RGCN layer from DTI module and molecular graph
embedding e ) of the I hnear layer from CPI module as the
input of Shared Unit (el , el € RY™) Second, we utilize
four trainable weights (wdd, wdq, Wyg, Wed € R%™) to automat-
ically learn the weight of each input feature as follows:

e = wi; el +wy, e, ®
T\ 0) ()
e, =wy, e +wj Oe,’, 4)

where €/, e € Rd”” are the features obtained from linear
transformation of e ) and e l_ ) respectively, and ©® denotes
the element-wise multrphcatlon (i.e., linear operation).
Third, to further combine with the feature vectors of drug
and compound, we construct a cross matrix C € Rdimxdim
by pairwise interactions of their latent feature ) and e, (i.e.,
cross operation) as shown in Eq. (5).

‘Mg

e, eg()

T

C=eile) =| : L ®)

:j(dz?m)e;(l) . d(dzm)ei](d?m)

!
(1) (dim)
€ '€,
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Fig. 1 The framework of our proposed KG-MTL.
To maintain the symmetry of learned embeddings, we where ® denotes matrix multiplication, Wqq, Wgq, wdg, ?g are
mix the features along both horizontal and vertical direc- trainable weights and by, b, represent bias vectors. ed nd

tions by designing two intermediate variables C;=C
and C, = C*, where C,, C, € R%"*4™ g0 we can capture
the high-dimensional features of drug entity and com-
pound molecule. Finally, we input C; and C, into a non-
linear operator to project them back to the original fea-
ture space of the input of two modules, and they are cal-
culated as follows:

(l+1)

(6)
)

=Cy®Wys + Cy ® Wyq + by,
e““)—cd@wgngC ® 4y + by,

e(l*1) are used as the inputs of next layer in DTI and CPI mod-
ules. Note that once the Shared Unit is used, it will merge the
learned embeddings of the drug entity and the corresponding
compound into a new representation, which will update the
drug or compound representation of the candidate layer in
each module for iterative training respectively. Otherwise, it
goes directly to the next layer for model training. Actually,
the Shared Unit can be regarded as a part of the component
that added between the linear and RGCN layer. Here, we
only added a Shared Unit in the first component (i.e., the first
linear and RGCN layer) and it can be added in the second and
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subsequent component as the number of layers increases. Dif-
ferent from the traditional operation method in multi-task
learning (e.g., Cross-Stitch [26]), our proposed method can
obtain more high-order features from knowledge graph, we
suggest that Shared Unit should be modeled at the lower layer
to capture more general features. We will evaluate the impact
of number and settings of Shared Unit in parameter sensitivity
analysis (Section 4.8).

3.3 Design Decisions for Shared Unit

We design the novel Shared Unit for multi-task learning
between related tasks. The primary idea is to apply the
explicit features efficiently crossing different tasks. For the
sake of simplicity, we use multi-task learning with two tasks
in this work. Intuitively, the designed Shared Unit can regu-
larize both tasks by learning and enforcing the shared repre-
sentations (i.e., crossing features). And the proposed Shared
Unit is composed of two parts, including linear and cross
operation.

Linear Operation. The linear operation can model the lin-
ear combinations of features from both tasks using dot
product with learnable parameters. Intuitively, we regard it
as an attention mechanism [36], where the importance (.e.,
weight) of different feature dimensions can be learned to
improve the representation ability of drug and compound
features.

Cross Operation. Considering the Weierstrass approxima-
tion theorem [37], any functions under certain smoothness
assumption can be approximated by polynomial to arbi-
trary accuracy. So we examine the ability of high-order
interaction approximation of the Shared Unit.

Theorem 1. Denote the representations of given drug and com-
! (dim)]T
d

pound entities as e, = [e;<1> s and e; = [elg(” e

! (dim)1T ; / /o /
eg( )", respectively. Then, the cross terms e/, and e, inlleg

and ||e} 1) ||, (i.e., the L1-norm of e, and e,) with maximal degree

’ 10 1 .
are represented by ka_ﬂer;l)“‘ e;dzm)ad“" e;“)f‘l --~eg(d7’m)ﬂ dim

where kyp € R,o;,8;, €N for ie{l,...,dim},oq +---+
Qgim = 25"V and By + -+ 4 By = 251(L > 1),

And the [T/ e;(')“"e;("’)ﬁi is also called combinatorial fea-
ture, which can be obtained by measuring the interactions
of various original features. The Shared Unit can automati-
cally model the high-level fused representation of drugs
and compounds according to Theorem 1, which proves the
superior approximation ability of the cross operation. More-
over, we empirically evaluate each operation in the Ablation
Experiments (Section 4.7).

3.4 Model Training

Given the DTI pairs, CPI pairs and the corresponding
labels in the training set for both two tasks, our optimiza-
tion goal is to minimize the following cross-entropy loss
as follows:

Lai=— > yiogpfl + (1 —yflog(1—pl), ®)
(dyst;)E€P i

Loi=— Y yPlogpl + (1 -y log(1—pi"), (9
(9:57)EPepi
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where Pgy; (resp., P.,;) denotes the set of drug-target (resp.,
compound-protein) pairs in training set and y{!' (resp., y;\")
is the true label of DTI pair (d;,t;) (resp., CPI pair (g, s;)).
Meanwhile, L2 regularization with a penalty coefficient of 1
is adopted to prevent the model from overfitting. And we
adopt a sigmoid function to calculate the interaction proba-

bility of given pairs.

Algorithm 1. Multi Task Training for KG-MTL

Input: CPI pairs P, Uy, DTI pairs Py, Uy, KG Gy, and
g,s,d,t represent the compound, protein, drug, target
between CPI and DTI pairs, respectively;

Output: f(g, S, d, lf|®7 Pcpi, Ucpi, Pdtm Udtia Gkg);

1: Initialize all parameters;

2: Split training set from P,,;;Usy; and Py;/Us; for CPI and
DTI tasks, respectively, by 10-fold cross validation;

3: for zero to training epochs do

4 Sample subgraph G, from G}, with negative triples;

5: / / CPIs&DTlIs prediction tasks with Shared Unit

6

7

8

for i steps do
Embed each node of subgraph G.;
Extract heterogeneous features d,, t, of d and ¢ from
Gsup by RGCN module;

9: Represent the compound g and protein s as g, and s,

by GCN, linear modules and CNN respectively;

10: Obtain the representations of compound g, and drug
d, from g, and d, fused by the Shared Unit module;

11: Predict the potential CPI and DTI using the

concatenated vectors [g,; So), [dy; to];
12: Calculate the task-dependent loss function by Egs.
(8)-(9);

13: Calculate the total loss by Eq. (10);

14: Update all parameters of F by gradient descent;

15: end for

16: end for

3.5 Learning Strategy

In multi-task learning, it is necessary to optimize multiple
objectives at the same time. A simple way is to directly sum
up the losses of multiple tasks, but it cannot adapt to the dif-
ferences between various tasks. To solve the limitation, in
this paper, we introduce a method based on Bayesian uncer-
tainty to alleviate the potential negative risk in multi-task
learning [38]. To apply the theory to our sigmoid classifier,
we relied on the assumption [39] that 5 (e +1) ~
(e" 4+ 1), as it can be simply observed that the equation
holds when A = 1. Then, considering the sigmoid likelihood
and loss functions of the two tasks, the final form of the opti-
mization objective is obtained as follows:

‘Ctotal - £()\17 )‘2)

= 710g (P(ydti‘fdti(')a >\l) : P(ycpi‘fcpi(‘)7)\2))
1

1
= Vﬁdtz + F[,cpi + log Ay + log A,
1 2

(10)
where \; (resp., A7) is trainable parameter of the probability
model in DTI (resp., CPI) task, yq (resp., y.i) represents the
label of DTI (resp., CPI) pair and fy; (resp., f.i) is the map-

ping function of DTI (resP., CPI) module.
rom |IEEE Xplore. Restrictions apply.
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The pseudocode of jointly optimization procedure for
KG-MTL is outlined in Algorithm 1. For the given inputs,
P.,; (resp., Py;) and U,y (resp., Ug;) represent the positive
and negative samples of CPI (resp., DTI) pairs, and Gy, is
the large-scale knowledge graph DRKG. At the beginning
(Line 1), we use a fixed random seed to initialize all learn-
able parameters ® in KG-MTL. Then we split the samples of
CPI and DTI pairs into the training, validation and test set,
respectively, by a ratio of 8/1/1 (Line 2). For each training
iteration, we will sample a subgraph G, from Gy, (Line 4),
and then a RGCN module is applied to extract heteroge-
neous features (i.e., d, for drug d and ¢, for target ¢) from
Gy (Line 7-8). Moreover, in CPI module, we learn com-
pound representation g, from molecular graph g by GCN
model, and we extract the embedding s, from protein
sequence s using linear layer (Line 9). Once the representa-
tions of compound and corresponding drug entity are
obtained, we input them into the Shared Unit module to out-
put the mixed features g,, d,, and then they will be updated
in next linear layer and RGCN layer (Line 10). Next, we
adopt the stitched vectors (i.e., [g,; S,] and [d,;¢,]) to predict
CPI and DTI (Line 11). Furthermore, we perform Learning
Strategy on the loss function with the predicted values (Line
12-13). At last, we update all the trainable parameters (Line
14). The process stops when the model converges.

3.6 Computational Complexity Analysis

The computational complexity of KG-MTL consists of three
parts. Specifically, the update of entity embedding for
RGCN model in DTI prediction task has the computational
complexity of O(dim* NK|R|) by Eq. (1), where K is the num-
ber of neighbors, N is the number of nodes and | R| represents
the number of relations in the knowledge graph. The learn-
ing process of molecule graph and protein sequence by GCN
and CNN models in CPI prediction task takes O(n*dim) and
O(dim®F?) respectively, where n is the number of nodes in
molecule graph and F represents the size of the kernel in
CNN model. The updating of shared features from both two
tasks are related to linear and cross operators, so they take
O(dim) and O(dim?) respectively (see Section Shared Unit),
where dim is the dimension of feature vectors. Therefore,
supposing the training stops after i steps, the overall compu-
tational complexity is obtained as follows:

O(((dimNK|R| + n® + dimF? + 1 + dim)dim)i),

note that K < N, n < N and |R| < N. The main complex-
ity is matrix multiplication which is also a basic operation
in deep graph neural networks. And we can observe that
the overall complexity of KG-MTL mainly depends on the
feature size dim, the number of relations |R|, and the num-
ber of nodes in the knowledge graph. For large-scale knowl-
edge graphs and datasets, we speed up the training process
in each iteration by using sparse matrix and subgraph
sampling.

3.7 Query Pattern of Knowledge Graph

In our paper, the adopted knowledge graph is a comprehen-
sive biological knowledge graph relating to drugs, diseases,
proteins, genes, pathways, and expression. It includes 5.9
million edges belonging to 107 types of relationships (e.g.,
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Fig. 2 The query pattern of a potential drug-target interaction in our pro-
posed KG-MTL.

treatment, regulates). In fact, the knowledge graph does not
contain the existing drug-target pairs and is only used to
extract semantic information from drug and target repre-
sentations. The learned embedding is adopted to determine
whether there is an interaction between drug-target pairs.
Fig. 2 shows a query pattern to discover the potential inter-
action between a drug-target pair. We first obtain some logic
rules of a drug-target pair from the adopted knowledge
graph (see the middle part of Fig. 2). Then we can observe
that the drug Biotin (ID: DB00121) has an interaction relation
with the disease Schizophrenia (Mesh ID: D012559). Mean-
while, the disease Schizophrenia can be regulated by target
TRIM33 (Gene ID: 51592). Finally we can further infer that
the drug Biotin is more likely to interact with target TRIM33.

4 EXPERIMENTS

4.1 Datasets and Settings

We evaluate our proposed KG-MTL' by using four datasets:
1) DrugBank collects the unique bioinformatics and chemin-
formatics resources that contain 16,553 drug-target interac-
tions with 5,996 drugs and 3,479 targets [40]. 2) DrugCentral
contains 9,477 drug-target interactions with 1,427 drugs and
1,106 targets [41]. 3) human and 4) C.elegans are high quality
datasets that integrate various resources [21]. The human
dataset contains 2,471 compound-protein interactions with
1,080 compounds and 816 proteins while the C.elegans
dataset includes 2,547 compound-protein interactions with
886 compounds and 806 proteins. To provide much struc-
tured information on various entities, we adopt a large-scale
knowledge graph named DRKG that collects 97,238 entities
and 5,874,261 triples belonging to 13 entity-types (e.g., drug,
target and disease) and 107 edge-types respectively [31].

4.2 Data Processing

The DrugBank and DrugCentral datasets are adopted in
DTI task, and we randomly sample from positive samples
to generate the same number of the negative DTI pair as
positive one since no negative DTI pairs are provided. Sub-
sequently, we take a drug (resp., target) sample with Drug-
Bank ID (resp., protein for Uniprot ID) from training set,
and then map the sample ID to the corresponding entity of
DRKG to obtain the embedding of drug or target. As to CPI
task, the positive and negative samples are unbalanced in
human and C.elegans datasets, and thus we adjust the ratio
to 1:3 to adapt the prediction model. Besides, we removed
these samples whose drug entity can not be found in the
knowledge graph to merge the features of multiple tasks

1. numOhttps : // github.com/zzenglab/ KG — MTL
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from the same molecule samples (i.e., the drug entity and
corresponding molecular graph of the compound). After
that, we use 10-fold cross-validation and choose two folds
as the validation and test sets in each iteration to split the
dataset into 8/1/1. To evaluate the performance, we adopt
accuracy (ACC), area under the ROC curve (AUC) and area
under the precision-recall curve (AUPR) as the metrics.

4.3 Baselines
To validate the performance of KG-MTL, we compare it
with the following state-of-the-art baselines:

e RF (Random Forest), SVM (Support Vector Machine)
and DNN (Deep Neural Network) applied the
molecular fingerprints (ECFP) of drug or compound
and the PSC features of protein descriptors, and
DNN used a three layer DNN with hidden size of
1,024 [42].

e DeepDTI [43] applied a neural network based on
restricted boltzman machine using ECFP and PSC
features for DTI prediction.

o  DeepConv-DTI [44] adopted CNN to extract the local
features of protein sequences and used fully con-
nected layer to encode the molecular fingerprints of
drugs for DTI prediction. Here we implemented
DeepConv-DTI to predict CPI and termed it as Deep-
Conv-CPI.

e GNN-CPI [15] applied GNN to encode molecular
graph of compounds and adopted CNN to obtain
the chemical features of proteins for CPI task. And
we implemented GNN-CPI for DTI prediction,
denoted by GNN-DTI.

o  GraphCPI [35] extracted the molecular structures of
compounds and the chemical contexts of protein
sequences by developing the GCN and CNN
modules.

e NeoDTI [19] constructed a heterogeneous networks
to learn latent representations of drugs and targets.
We set the dimension of the edge-type projection
matrices as 512, and the learning rate to 0.001.

o TriModel [25] is an end-to-end model using KG
embedding approach for DTI task. Following the
original work, we adopt AMSGrad optimizer with
a learning rate of 0.01 to optimize the training
loss.

e TransE [45] and DistMult [46] are knowledge graph
embedding models that learn the representation of
entities, which can be directly used in DTI and CPI
tasks. All hyperparameters (e.g., batch size and
learning rate) of the two models are kept the same as
ours.

e GCN-KG adopts the GCN [34] model to learn the rep-
resentations of entities on homogeneous KG in
downstream tasks (i.e., DTI and CPI tasks), All
hyperparameters are kept the same as ours.

All baselines are based on the public code where we
kept the settings of models the same as reported in the
original papers. Following [43] and [42], we imple-
mented RF, SVM and DNN models for DTI and CPI pre-
diction respectively.
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4.4 Implementation Details

In the training of DTI task, to accelerate the training process
and to save GPU (i.e., Graphics Processing Unit) memory, we
adopt neighbor sampling to generate a subgraph of 40,000
edges from the knowledge graph DRKG [47]. Then we con-
struct a 3-layer RGCN model with a hidden size of 128 and
the dimension of entity embedding is set to 128 as well. And
the initialization of entity embedding and relation weights
are derived from a normalized distribution U [*\/%7\/%]'

where dim is the dimension of the embedding [48]. As to CPI
task, we use the GCN layer for molecular graph and output a
global embedding with a dimension of 128. For two tasks, we
adopt 3 fully-connected layers with 128 hidden units and a
sigmoid layer to output the interaction probability for given
pair. To optimize all trainable parameters, we use Adam opti-
mizer [49] with a learning rate of 0.001 and save the best
model based on the AUC metric of the validation set. And we
set the number of Shared Unit layer to 1. The batch size and
epoch are 32 and 100 respectively. In this paper, we adopt a
10-fold cross-validation to evaluate the performance of KG-
MTL, and the mean and standard deviation of all metrics are
reported.

4.5 DTI Prediction Results

As shown in Table 1, we observe that KG-MTL outperforms
all other baselines. Specifically, KG-MTL improves the
ACC, AUC, and AUPR by at least 82%, 3.9% and 5%
respectively on the DrugCentral dataset, and 4.9%, 0.8%
and 1.8% respectively on the DrugBank dataset. The
improvement indicates that (i) compared with the methods
(e.g., DeepConv-DTI) that only learn representations of
drug and protein sequence, our method can preserve more
useful information on various drug-like compounds by the
CPI module; and (ii) compared with KG-based models (i.e.,
TriModel, TransE, DistMult and GCN-KG) that learn node
embedding directly, the Shared Unit also helps the model to
jointly learn the molecular structures and the semantic rela-
tions of the drug in DRKG, thus improving the performance
of DTI task.

4.6 CPI Prediction Results

The comparison results on the CPI task are listed in Table 2.
The results illustrate that KG-MTL outperforms all the base-
lines across human and C.elegans datasets. More specifi-
cally, KG-MTL achieves at least 2.6% on AUC, 1.1% on
AUPR higher performance than other methods on the C.ele-
gans dataset. Meanwhile, KG-MTL achieves the best AUC
score of 94.9% with at least 3.3% absolute gain compared to
GNN-CPI (the second-best method) in the human dataset.
The improvement is attributed to the abundant information
brought by the DTI module that can extract the semantic
relations of drug entities from the knowledge graph, while
other methods (e.g., GNN-CPI and NeoDTI) only learn
embeddings from molecular structure of compound or the
topology of the drug-related network. Meanwhile, com-
pared with the KG-based models (i.e., TransE, DistMult and
GCN-KG) that directly adopt knowledge graph information
and ignore the molecular structure, KG-MTL has a better
performance by fusing KG information and drug structure
through the Shared Unit.
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TABLE 1 TABLE 2
Results of DTI Task Performance of CPI Task
Metrics ACC AUC AUPR Metrics ACC AUC AUPR
Methods Methods
RF 0.832 £0.004 0.589 £0.005 0.679 + 0.004 RF 0.883 +£0.002 0.422 +0.002 0.433 £ 0.007
0.774 £0.003 0.636 +0.006  0.717 4 0.004 0.912 £0.003 0.417 £0.009 0.431 £ 0.005
SVM 0.688 = 0.001 0.613 +£0.004 0.590 + 0.002 SVM 0.811 +0.001 0.51540.008 0.412 + 0.018
0.624 +£0.002 0.567 £0.001 0.552 +0.003 0.839 £0.004 0.417 +0.003 0.372 £ 0.003
DNN 0.879 £0.006 0.941 £0.003 0.932 + 0.007 DNN 0.877 £0.002 0.910 +0.002 0.835 =+ 0.005
0.833 £0.005 0.891 +0.004 0.891 4+ 0.008 0.911 +£0.007 0.962 +0.002 0.922 + 0.005
TransE 0.853 £0.003 0.909 +0.012  0.929 4+ 0.001 TransE 0.893 +0.002 0.936 +0.008 0.879 + 0.001
0.901 £0.004 0.924 £0.003 0.935+0.011 0.854 +£0.001 0.927 +0.004 0.930 £ 0.009
DistMult 0912 £0.001 0.943 £0.002 0.955 4+ 0.001 DistMult 0.881 +0.004 0.937 +0.005 0.878 £ 0.006
0.893 £0.003 0.927 +£0.005 0.932 4+ 0.005 0.901 +£0.012 0.946 +0.006 0.926 + 0.003
GCN-KG 0.833 £0.004 0.879 +0.007 0.893 4+ 0.002 GCN-KG 0.843 +0.002 0.891 +0.005 0.889 + 0.013
0.894 £0.003 0.929 £0.004 0.924 +0.003 0.904 +0.001 0.932 +0.003 0.912 £ 0.003
GNN-DTI 0.852 £0.004 0.921 £0.002 0.913 + 0.002 GNN-CPI 0.871 £0.013 0.916 +0.002 0.856 =+ 0.009
0.761 £ 0.007 0.845+0.006 0.846 4+ 0.005 0.843 +0.001 0.781 +0.008 0.713 £ 0.004
DeepConv ~ 0.847 +£0.013  0.903 + 0.003  0.885 + 0.007 DeepConv-CPI 0.866 + 0.003 0.902 + 0.008 0.844 + 0.002
-DTI 0.801 £0.009 0.892 +£0.007 0.893 + 0.004 0.856 +0.001 0.934 +0.007 0.825 + 0.003
DeepDTI 0.866 + 0.007 0.813 +0.001 0.846 +0.013 GraphCPI 0.747 £0.026 0.899 £ 0.001 0.781 £+ 0.013
0.636 =0.010 0.729 £0.002 0.778 +0.010 0.828 0.026 0.943 +0.001 0.855 = 0.002
TriModel 0.812 £0.003 0.883 +£0.004 0.871 4+ 0.001 NeoDTI 0.892 +0.008 0.881 +0.045 0.795 + 0.083
0.873 £0.001 0.934 +£0.005 0.941 +0.001 0.877 £0.007 0.910 +0.006 0.763 + 0.021
NeoDTI 0.882 £0.007 0.923 £0.001 0.895+0.016 KG-MTL 0.907 £ 0.005 T 0.949 + 0.002 7 0.899 + 0.005 T
0.891 £0.002 0.951 £0.005 0.917 +0.003 0.928 +0.003 T 0.969 + 0.002 7 0.933 + 0.005 T
KG-MTL 0.964 +0.001 7 0.980 + 0.001 7 0.982 4+ 0.001 7 KG-MTL-S.. 0.876 + 0.008 0920+ 0.004 0851 + 0.008
0.940 £+ 0.003 T 0.959 + 0.004 T 0.959 + 0.003 7 p 02905 T 0:004 02931 T 0:002 0:913 T 0:004
KG-MTL-Sy4; 0.905 4+ 0.006 0.946 +0.004 0.946 + 0.004 KG-MTL-L 0.886 +0.004 0.921 +0.005 0.846 + 0.007
0.878 £0.004 0.929 £0.002 0.926 + 0.003 0.904 +£0.004 0.955+0.003 0.918 £ 0.004
KG-MTL-L  0.940 +0.004 0.969 +0.005 0.967 &+ 0.007 KG-MTL-C 0.891 £0.005 0.923 +0.005 0.849 + 0.006
0.931 £0.004 0.946 +0.003 0.943 + 0.004 0.907 £ 0.005 0.957 +0.003 0.921 + 0.005
KG-MTL-C gggé i 8882 8322 i 8882 8323 i 8882 The first/second row of each method corresponds to the results on human and

The first[second row of each method corresponds to the results on DrugCentral
and DrugBank respectively.

4.7 Ablation Experiments

To investigate how the different operations of Shared Unit
and learning strategies improve the performance of the pro-
posed model, we conduct the ablation study on the follow-
ing variants of KG-MTL:

o KG-MTL-S is the variant of KG-MTL that removes
both the Shared Unit and learning strategies. So we
can adopt KG-MTL-Sy; (resp., KG-MTL-S,,;) repre-
sents the single DTI task (resp., CPI task)

e KG-MTL-L removes cross operation of Shared Unit
and simply retains the linear operation only.

e KG-MTL-C removes linear operation of Shared Unit
and retains the cross operation.

The ablation experiments results on both tasks are shown
in Tables 1 and 2. The results prove that the Shared Unit
including linear and cross operation, and learning strategy
are all effective for both two tasks. Among all the variants,
KG-MTL-S has the most significant performance gaps com-
pared with KG-MTL, which indicates that Shared Unit contrib-
utes the most to help the model to jointly capture the drug
features extracted from molecule graph and knowledge graph

C.elegans respectively.

that improves the prediction performance. Moreover, our
proposed method provides better performance than KG-
MTL-L and KG-MTL-C in all datasets, which proves that the
Shared Unit with complete settings is beneficial to improving
the prediction performance.

To further validate the effectiveness and stability of Shared
Unit on DTI and CPI tasks. Figs. 3 and 4 show the loss and
AUC curves of different variants of KG-MTL, respectively. As
shown in Fig. 3, we overall observe that KG-MTL provides
better robustness and stability with faster convergence and
lower loss with comparison to KG-MTL-L and KG-MTL-C.
And the loss curve of KG-MTL-S with slower convergence
gives limited performance gain on both tasks. We believe that
such significant improvements can be attributed to the shared
features of drugs or compounds learned from Shared Unit,
thereby having a positive influence on the performance of
KG-MTL. Furthermore, KG-MTL-L achieves the same perfor-
mance as our KG-MTL in terms of convergence with slower
speed, which can further prove that the cross operation of
Shared Unit is clearly helpful to the speed of model conver-
gence. The reason might be that the cross operation can make
the fused features smoother and sparser, which speeds up the
training process of KG-MTL. Meanwhile, compared with KG-
MTL, we also notice that KG-MTL-C shows the comparative
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Fig. 3. The loss curves of different variants of KG-MTL on DrugCentral&-
human dataset. And the loss is calculated on validation set.

performance on convergence, which indicates that the linear
transformation in Shared Unit can lower the convergence level
of our model. Similarly, as shown in Fig. 4, KG-MTL achieves
at least up to 1.6% and 1.1% improvements on the two data-
sets with comparison to the best baseline method. These find-
ings further validate the stability and effectiveness of our
proposed Shared Unit in KG-MTL.

To examine the effectiveness of our proposed Shared
Unit with comparison to the simple multi-task learning
method (i.e., Cross-Stitch), we further study the changes in
the embedding space of drug representations learned from
two methods. Specifically, the DrugBank dataset is prepro-
cessed and only drugs that have Anatomical Therapeutic
Chemical (ATC) code are kept. This procedure yields 1,623
drugs. Then we visualize the embedding vector of drug
representations learned by KG-MTL and Cross-Stitch,
respectively, by using PCA (Principal Component Analy-
sis) tool. Fig. 5 shows the distribution of drug representa-
tion in the embedding space on DrugBank dataset. As
shown in Fig. 5, the 2D representations of learned embed-
ding vectors for 14 drug types are grouped by the first
level of ATC classification system codes. Semantically, sim-
ilar ATC drugs should be mapped to nearby regions on
the embedding space. We can observe that our proposed
KG-MTL achieves better performance than Cross-Stitch on
grouping drug types. For example, there are 312 Nervous
drugs that account for the largest proportion (19.2%) in the
dataset, our method can accurately group the Nervous
drugs with comparison to Cross-Stitch. Therefore, the pro-
posed KG-MTL performs better ability than Cross-Stitch
on extracting the useful features from drugs, which results
in the superior performance of our method. The reason
may be that KG-MTL can effectively leverage the semantic

0.96 4 0.98 4
0.94 4 0.974
0.924 0.96
é 0.90 4 ‘é 0.95

0.94 1

0.88 1
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(a) AUC curves of models on (b) AUC curves of models on
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Fig. 4. The AUC curves of various variants of KG-MTL on DrugCentral&-
human dataset. And the AUC is calculated on test set.
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Fig. 5. The distribution of drug representation in the embedding space on
DrugBank dataset.

relations and molecular structures of drugs by using the
cross operation of the Shared Unit. while the Cross-Stitch
directly adopted four trainable parameters to learn the
weighted task-independent features, which can not capture
high-order information.

We believe that KG-MTL can obtain superior representa-
tions through more fine-grained feature fusing. Specifically,
the Cross-Stitch learns a combination of shared and task-
specific representations between two tasks by designing a
unit. Given two inputs x4 and z 5 from layer 1 for both tasks,
the Cross-Stitch learns linear combinations Z4 and Zp of
both the inputs. The formula at location (i, j) in the map
function is as follows

=ij ij
T, . a4 OAB Ty
7| lapa aps il
Tp Tp
where o 44,04, 054, app are trainable transfer weights of
representations between task A and task B. Meanwhile, the

cross operation of Shared Unit (see details in Section 3.2.3) is
defined as follows

11

e\ ") = Cy @ Wy + Cy @ Wya + by, 12)
eéi+1) =Cy @ Wy + Cy ® Wqy + by, (13)
where C; = C, C; = C" and C is defined as
e;<1>e’g<1> e';”e’;dim)
C=ée) = : : : , (14)
e’d(dim) e;}(l) e’d(dim> e’g(di m)
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Fig. 6. Results of KG-MTL with varying settings of r, dim, N and Shared Unit on DrugCentral and C.elegans datasets respectively.

where e;; and €] are the output of the linear operation. If we

ignore all biases in Eqs. (12) and (13), the cross operation
can be represented as follows

eflliﬂ) B eﬁl(e’g)T ® Waq + e'g(eﬁi)T ® Weq
eé:rl o

) efi(e;;)T ® Wy + e/g(e/d)T ® Wag

[efl} NCE)
e,q

The transfer matrix in Eq. (15) serves as the Cross-Stitch in
Eq. (11). Like Cross-Stitch, we can observe that KG-MTL
can make certain layers task-specific by setting (e/,)" ® g
(i.e., qp) Or (e;)T ® Wy, (i.e., apa) to zero, or choose a more
shared representation by assigning a higher value to them.
However, we can see the transfer matrix in KG-MTL is
more fine-grained than in Cross-Stitch, because the transfer
weights from scalars to dot products of two vectors. There-
fore, we can capture more drug information from knowl-
edge graph and molecular structure by Shared Unit, which
leads to show better visualization.

Waq (e&)T ® Wyq

I
| — |
—
(¢]
Qs @
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R
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Wyq (efi)T ® Wy

4.8 Parameter Sensitivity Analysis
In this experiment, we test the impact of the major hyper-
parameters of KG-MTL.

Impact of Negative Sample Size in KG. As shown in
Fig. 6a, we vary different negative sample size r and
observe that the optimal solution can be reached when
r=4. This is because KG-MTL can learn more useful infor-
mation with enough negative samples. However, as the
proportion of negative samples increases, some potential
positive triples may be treated as negative samples that
result in negative effect for the performance of KG-MTL.

Impact of Dimension of Entity Embedding. We investigate
the influence of dimension of entity embedding dim by
varying it from 32 to 300. Fig. 6b illustrates that our
method achieves the best AUC when dim=128 in the DTI
task, while the best result can be obtained when dim=64 in
CPI task. The reason could be that the embedding with rel-
atively larger dim can represent much information from
large-scale KG in the DTI task, while the molecular fea-
tures with higher dim will lead to information redundancy
in CPI task.

Impact of Various Number and Settings of Shared Unit.As
shown in Fig. 6¢c, we investigate the effect of the number of
Shared Unit N by varying it from 1 to 4 (Recall the Shared
Unit in Section 3.2). We find that KG-MTL achieves worse
performance in CPI task as N increases, while it obtains
the stable AUC score in DTI task. This implies that the

shared features in lower layer will be more beneficial to
improving the performance of model. Meanwhile, Fig. 6d
shows the influence of Shared Unit with different settings.
We observe that the Shared Unit with both linear and cross
operations achieves better performance than other opera-
tions (e.g., Cross-Stitch [26]). This proves that KG-MTL can
effectively leverage the semantic relations and molecular
structures of drugs by using Shared Unit in high-order fea-
ture space, while Cross-Stitch(resp., KG-MTL-L) directly
adopted four trainable parameters to share task-indepen-
dent features.

4.9 Analysis of Data Redundancy

In the process of model training for DTI and CPI tasks, KG-

MTL simultaneously fits the datasets (DrugCentral and

human datasets) used in both tasks. However, some samples

that existed in multiple datasets may have a positive influ-

ence on the performance of the model, and here we call it
0.99 | ™= KGMTLSg,

0.98 -
g
43 0.97
=
0.96 -
0.95 -
0.94 -
ACC AUC

(a) Results of DTI task on non-redundant DrugCentral
dataset.
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(b) Results of CPI task on non-redundant human dataset.

Metr|

Fig. 7. The performance of KG-MTL and KG-MTL-S evaluated on Drug-
Central and human by removing the redundancy between them.
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Fig. 8. The performance of KG-MTL and KG-MTL-S (including KG-MTL-
Su; and KG-MTL-S,,;) tested on BindingDB dataset.
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Fig. 9. The results of KG-MTL and KG-MTL-S validated on unbalanced
DrugCentral (top) and human (bottom) datasets.
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TABLE 3
The Detailed Description of Preprocessed Dataset
Number/Dataset DrugBank human
All drug-target pairs 33,483 12,452
Test set 1,653 (4.93%) 1,118 (8.97%)

data leak. For example, one drug-target pair that originally
belongs to the training set of DrugCentral may be a sample
in the test set of human dataset, which can slightly improve
the performance of the CPI task. And we statistically find
that there is a slight redundancy between human/DrugBank
(1.2%) and human/DrugCentral (0.9%), but no redundancy
exists in C.elegans dataset. Thus, owing to the influence of
data leak in our used datasets, we remove the redundant
samples between human and DrugCentral to re-evaluate the
performance of our model. As shown in Fig. 7, we observe
that KG-MTL still outperforms KG-MTL-S4; and KG-MTL-
Sepi on ACC, AUC, and AUPR scores across two tasks. This
may be because the features obtained from relational knowl-
edge graph by the Shared Unit have stronger robustness and
generalization, which can ignore outliers and alleviate the
impact of the data leak to some extent.

4.10 Generalization of KG-MTL

To validate the effectiveness and generalization of our pro-
posed Shared Unit in multi tasks, we adopt an external data-
set BindingDB [50] to evaluate the performance of KG-MTL
and the result is shown in Fig. 8. Following earlier
work [42], we collect the positive DTI/CPI pairs that satisfy
k¢ < 30 units and sample the same number of negative
DTI/CPI pairs as the positive samples for external valida-
tion set. We plot the ROC curves of KG-MTL and KG-MTL-
S in Fig. 8a. We find that KG-MTL achieves superior perfor-
mance over the single-task models (i.e., KG-MTL-5;; and
KG-MTL-S,;,;). Moreover, we also plot the precision-recall
curves in Fig. 8b. Specifically, KG-MTL achieves higher
AUPR results of 7.4% for DTI task and 4.6% for CPI tasks,
respectively, which indicates that our proposed KG-MTL is
more beneficial to predict the unknown molecular interac-
tions than single-task models. The results demonstrate that
KG-MTL can learn more generalized features of drugs via
the Shared Unit between multiple tasks.

However, the number of known DTI or CPI pairs is
much smaller than the unknown one, which leads to a seri-
ous imbalance in two datasets. To mimic the situation, we
perform a cross-validation test that the negative samples
in the test set contain nine times more than the positive
ones [18]. Thus, the positive samples (i.e., known DTIs/

TABLE 4
Results of KG-MTL and its Variants in Test Set
ACC AUC AUPR
KG-MTL for dti 0.847 0.883 0.879
KG-MTL for cpi 0.760 0.738 0.714
KG-MTL-S(dti) 0.798 0.837 0.829
KG-MTL-S(cpi) 0.731 0.726 0.702

First/second row of each method corresponds to the results on DrugBank and
Human respectively.
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TABLE 5

Candidate Drugs and Possible Interaction Proteins Related to COVID-19
DrugBankID  DrugName  Prediction Score  Target Active protein Evidence
DB00619 Imatinib 1.0 TNF-« CPE,AlphaLISA, CoV-PPE MERS-PPE NCT04338698
DB12612 Ozanimod 0.99 TNF-« ACE2,AlphaLISA,CoV-PPE, MERS-PPE NCT04405102
DB00198 Oseltamivir 0.99 TNF-« NA NCT04338698
DB09552 Tonzonium 0.99 TNF-« AlphaLISA,3CL enzymatic activity, MERS-PPE NA
DB09220 Nicorandil 0.98 TNF-« NA PMC7436472
DB01268 Sunitinib 0.99 IL-6 AlphaLISA MERS-PPE PMC7550610
DB00811 Ribavirin 0.99 IL-6 NA NCT04494399
DB01143 Amifostone 0.98 IL-6 3CL enzymatic activity, CoV-PPE PMC3661204
DB09079 Nintedanib 0.98 IL-6 ACE2,CoV-PPE,CPE,AlphaLISA PMC7969149
DB00284 Acarbose 0.98 IL-6 NA PM(C3832586

Note that NA represents no evidence to identify the fact.

CPIs) occupy only 10% of the whole dataset in the setting
of unbalanced datasets. In previous works [13], [51], as the
area under the roc curve (AUC) may be an over-optimistic
metric to evaluate the performance of model in highly
imbalanced dataset, here we add the AUPR metric to give
a better evaluation in this scenario. As shown in Fig. 9, we
observe that the AUPR results of KG-MTL and KG-MTL-S
are declined on the unbalanced dataset with comparison
to their performance on DrugCentral and human datasets,
but we also notice that KG-MTL still achieves a higher
AUPR score than the single-task model (i.e., KG-MTL-S).
This further implies that multi-task learning of our KG-
MTL results in a quick adaptation to predict unknown
DTIs/CPIs on the sparse datasets and a much more signifi-
cant improvement in generalization. Thus, KG-MTL
indeed narrows the gap by learning how to make adapta-
tions on the unbalanced dataset.

To further test the generalization of our proposed method
on DTI and CPI tasks, we conduct a comparison experiment
on two new test data with a reasonable split. Specifically, we
select those drug-target pairs whose drug appears only once
into two test sets from DrugBank (for DTI task) and human
(for CPI task) datasets, respectively. The detailed description
of the preprocessed dataset is shown in Table 2. Table 4 illus-
trates the comparison result of our model and its variants
(i.e., single-task model denoted as KG-MTL-S) on two tasks.
From this table, we can find that the proposed KG-MTL sig-
nificantly outperforms the single-task model across the two
datasets. More specifically, KG-MTL achieves at least 2.9%
on ACC, 1.2% on AUC, and 1.2% on AUPR higher perfor-
mance than other methods, which further proves that KG-
MTL can improve the predictive on unseen data. This is due
to the fact that the proposed Shared Unit boosts the generali-
zation ability of our model.

4.11 Case Study: COVID-19

Lastly, we further present a case study to show the potential
predictive ability of KG-MTL. Table 5 shows the top 10
drugs that predicted by our model are selected as the candi-
date agents binding to TNF-o and IL-6. We observe that
nine drugs can be confirmed. For example, Nicorandil (ID:
PMC(C7436472) and Acarbose (ID:PMC3832586) have been
reported by PubMed. Meanwhile, Imatinib and Ribavirin
are in clinical trials, and the evidence can be checked b

their NCT number. In addition, we use DrugCentral
REDIAL 2020 [52] toolkit to evaluate the drug activities to
the Sars-CoV-2 related targets. And we also find that these
drugs have high ACE2? enzymatic activity or 3CL> enzy-
matic activity for COVID-19 (e.g., Amifostone, Ozanimod),
which further proves the superiority of the KG-MTL. The
knowledge graph enhanced multi-task learning framework
is a promising tool for predicting the potential drug-target
interactions.

5 CONCLUSION

Molecular interaction prediction (e.g., DTI prediction and
CPI prediction) between targets plays a key role in many
applications, including pharmacology and clinical applica-
tion. In this paper, we focus on molecular interaction pre-
diction that demands the model to capture the features of
drug and the interactions related to targets. However, previ-
ous works represent drug features with insufficient infor-
mation and ignore semantic information in knowledge
graph. To address this limitation, we propose a novel frame-
work named KG-MTL that develops a novel shared unit in
the view of multi-task learning, to capture the information
from both molecular graph of compounds and semantic
relations of drug entities of knowledge graph respectively.
Experimental results on real-world datasets show that KG-
MTL could improve the performance on the drug-target
interaction prediction and compound-protein interaction
prediction tasks.
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